THE ROLE OF EFFICACY TESTING IN PERSONAL CARE PRODUCTS

Prof. Dr. Süeda Hekimoğlu
Hacettepe University, Faculty of Pharmacy,
Department of Pharmaceutical Technology,
Subdepartment of Cosmetology, 06100 Sıhhıye Ankara
Personal care products

- Skin care: Moisturizing, antiaging, lightening, shaving products
- Bath and Body care: Soaps, syndets, shower gels, deodorants, antiperspirants
- Hair care: Shampoos, conditioners, styling products
- Oral care: Mouthwashes and rinses, toothpastes
Cosmetics and Personal care products
Cosmetic claims

• pH balanced
• moisturizing
• less irritating
• to help strengthen the skin’s barriers function
• to make hair stronger
• reducing the “appearance” of wrinkles
Hair product claims

• repairs split ends
• strengthening the hair
• manageability or efficacy in increasing combability
• moisturizing ability
• protection from heat damage
• make hair shine
• shine, smoothness, strength or volume
Efficacy testing of personal care products

In vitro tests

Ex vivo tests

In vivo tests: Evaluation on human volunteers

- Objective instrumental measurements.
- Clinical expert evaluation
- Volunteer self-assessment,
In Vitro tests

- UVA protection performance of sun care products
- 3D reconstituted epidermis model for safety/efficacy of cosmetics
- Morphological features of the 3-dimensional reconstituted EpiDerm
Ex vivo tests

• Performance tests of hair care products
 • Wet and dry combability
 • Mechanical strength
The influence of shampoos to hair volume

- The determination of silicones and hydrogenated didecenes deposited on human hair from shampoo applications is evaluated.
- Test Shampoo contains Hydrogenated Didecene
- Shampoos containing dimethicone and dimethiconol were taken from the market.
- Strands of human hair were purchased from International Hair Innporters (New York).

The influence of shampoos to hair volume

• The influence of the shampoos to the volume of hair strands was determined applying an imaging system

• Relative volumes were calculated as ratio of volume after versus before shampoo application for each strand
The effect of shampoos to the volume of hair strands

Hans-Martin Haake et al, Determination of the substantivity of emollients to human hair J. Cosmet. Sci..58, 443-450 (July/August 2007)
The influence of shampoos to hair volume

• The volumes of the hair strands shampooed with the 2-in-1 product are only at about 60% of the initial volume.

• Hair strands washed with the shampoo containing the hydrogenated didecene retain their volume even after repeated application.

• The shampoo with hydrogenated didecene shows a good conditioning performance while retaining the volume of the shampooed hair strands.
In vivo tests

• Subjective tests
• Objective tests
 • Invasive techniques
 • Noninvasive techniques
In vivo tests

• **Subjective tests**: These tests are based on an appreciation of product performance made through the senses of either panellists or of experts.

• **Objective tests**: Evaluations made with techniques that are reproducible and measurable, without the influence of any personal thought.

 • **Noninvasive techniques** means “a procedure or instrument causing minimal and only temporary changes to structure or function, and in particular, not involving pain, incision, or loss of blood”

 • These tests are performed with instruments that can precisely measure given parameters, according to a defined protocol, following the application of a product on human subjects.
CORNEOMETER™ *(Courage + khazaka)*

- Determine the hydration level of the skin surface (Stratum corneum).
- The measuring principle is based on capacitance measurement of a dielectric medium.
TEWAMETER™ (Courage+Khazaka)

Transepidermal Waterloss and Skin Barrier Function
MEXAMETER (Courage+khazaka)

- Assessing Melanin Content and Erythema Level
CUTOMETER™ (Courage+Khazaka)

- The Cutometer® is destined to measure elasticity of the upper skin layer using negative pressure which deforms the skin mechanically.
Skin-pH-Meter

- pH-Measurement on Skin and Scalp
Sebumeter

• Determining sebum on the skin surface, scalp and hair
VISIOSCAN® VC 98

- Visioscan® VC 98 - Skin Topography directly from the Skin
The effect of soaps and synthetic detergents on human skin

• The aim of the study is to compare the effects of soaps and syndets on the skin by wash test.

• The wash test was evaluated by bioengineering measurements
 • TEWL (Tewameter)
 • Skin hydration (Corneometer)
 • Skin pH (Skin pHmeter)

The effect of soaps and synthetic detergents on human skin

<table>
<thead>
<tr>
<th>SOAPS</th>
<th>SYNDETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Antibacterial soap</td>
<td>B: Syndet</td>
</tr>
<tr>
<td>E: Antibacterial soap</td>
<td>C: Semi syndet (Combo bar)</td>
</tr>
<tr>
<td>D: Soap</td>
<td>F: Antibacterial liquid syndet</td>
</tr>
<tr>
<td>G: Soap</td>
<td>H: Liquid syndet</td>
</tr>
<tr>
<td></td>
<td>I: Liquid syndet</td>
</tr>
</tbody>
</table>
• All soaps and syndets increased the skin pH value.
• A, D and E soaps had more effect than syndets on the skin.
Changes in TEWL

- All soaps and syndets increased the TEWL value of the skin
- Generally soaps had more irritant effect than syndets. The antibacterial soap A, was the most irritant product.
Changes in humidity

- All soaps decreased the skin hydration value.
- Among the syndets H and I decreased the skin hydration although B, C, F syndets had no significant effect on skin humidity.
The effect of soaps and synthetic detergents on human skin

• It was seen that at the end of the wash test, soaps increased the TEWL and pH values and decreased the skin hydration values.

• Especially the antibacterial soap “A”, which contains triclocarban and triclosan, had more irritant effect than other soaps and syndets.

• All syndets also increased TEWL and pH values of the skin. H and I syndets also decreased skin hydration values but other syndets (B and C) didn’t have any unwanted effects.
Safety and efficacy of personal care products containing colloidal oatmeal

• Colloidal oatmeal is a natural ingredient used in the formulation of personal care products for relief of skin dryness and itchiness.

• Chemical composition of oatmeal consists of polysaccharides, lipids, proteins, flavonoids, minerals, and vitamins.

• Colloidal oatmeal is preferred due to its moisturizing, cleansing, antioxidative and anti-inflammatory properties.

Safety and efficacy of personal care products containing colloidal oatmeal

• Oatmeal-containing personal care products:
 • bath products
 • shampoos
 • moisturizers
 • shaving foams

• A total of 47 subjects completed the study

• Skin hydration was assessed using a Corneometer®

• The desquamation index and the surface area of dead epithelial cells were assessed using adhesive disc stripping (D-squame®) with subsequent digital image analysis.
Safety and efficacy of personal care products containing colloidal oatmeal

• Clinical efficacy was assessed by a dermatologist. Assessments included visual examination of skin dryness and appearance of epithelial squamae, as well as tactile evaluation of skin roughness.

• Subject self-assessment involved a questionnaire with a five-point scale ranging from 1 ("agree") to 5 ("disagree").

• Statistical analysis was performed using SPSS software.
Skin hydration increases during and after use of oatmeal-containing cream.
Surface area of dead cells and desquamation index diminish with use of oatmeal-containing cream.
Clinically assessed parameters improve with use of oatmeal-containing cream.

Prof. Dr. Süeda Hekimoğlu

ICPC 2016
Subjective evaluation of effect on signs of skin dryness

Prof. Dr. Süeda Hekimoğlu

ICPC 2016
Safety and efficacy of personal care products containing colloidal oatmeal

• In this study, safety of personal care products containing oatmeal (creams, cleansers, lotions) were evaluated.

• Skin moisturizing and repair properties of an oatmeal-containing skin care cream for dry skin were tested.

• It was found that oatmeal-containing personal care products had very low irritant potential as well as a very low allergenic sensitization potential.

• Sustained skin moisturizing was documented in subjects with dry skin that lasted up to 2 weeks after product discontinuation.
CONCLUSION

• Last steps in the performance evaluation of the cosmetic/personal care products are subjective and objective tests

• Subjective and objective tests based on scientific data are carried out to determine the actual performance of the product

• In the evaluation of the cosmetic/personal care products, subjective tests and objective tests are used as complementary to each other